Respuesta :

Answer:

[tex]2cos^2(\theta) - 1 = cos(2\theta)[/tex]

Explanation:

Given

[tex]2cos^2(\theta) - 1[/tex]

Required

Simplify

In trigonometry:

[tex]sin^2(\theta) + cos^2(\theta) = 1[/tex]

So; the given expression becomes

[tex]2cos^2(\theta) - (sin^2(\theta) + cos^2(\theta))[/tex]

Open Bracket

[tex]2cos^2(\theta) - sin^2(\theta) - cos^2(\theta)[/tex]

Collect Like Terms

[tex]2cos^2(\theta) - cos^2(\theta)- sin^2(\theta)[/tex]

[tex]cos^2(\theta)- sin^2(\theta)[/tex]

In trigonometry:

[tex]cos(\theta + \theta) = cos^2(\theta)- sin^2(\theta)[/tex]

This implies that:

[tex]cos^2(\theta)- sin^2(\theta) = cos(\theta + \theta)[/tex]

=

[tex]cos(\theta + \theta)[/tex]

[tex]cos(2\theta)[/tex]

Hence:

[tex]2cos^2(\theta) - 1 = cos(2\theta)[/tex]