Use cylindrical coordinates to evaluate the triple integral ∭ where E is the solid bounded by the circular paraboloid z = 9 - 16(x^2 + y^2) and the xy -plane.

Respuesta :

Answer:

[tex]\mathbf{\iiint_E E \sqrt{x^2+y^2} \ dV =\dfrac{81 \ \pi}{80}}[/tex]

Step-by-step explanation:

The Cylindrical coordinates are:

x = rcosθ, y = rsinθ and z = z

From the question, on the xy-plane;

[tex]9 -16 (x^2 + y^2) = 0 \\ \\ 16 (x^2 + y^2) = 9 \\ \\ x^2+y^2 = \dfrac{9}{16}[/tex]

[tex]x^2+y^2 = (\dfrac{3}{4})^2[/tex]

where:

0 ≤ r ≤ [tex]\dfrac{3}{4}[/tex] and 0 ≤ θ ≤ 2π

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} \int ^{9-16r^2}_{0} \ r \times rdzdrd \theta[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} r^2 z|^{z= 9-16r^2}_{z=0} \ \ \ drd \theta[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} r^2 ( 9-16r^2}) \ drd \theta[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} ( 9r^2-16r^4}) \ drd \theta[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} ( \dfrac{9r^3}{3}-\dfrac{16r^5}{5}})|^{\dfrac{3}{4}}_{0} \ drd \theta[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} ( 3r^3}-\dfrac{16r^5}{5}})|^{\dfrac{3}{4}}_{0} \ drd \theta[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} ( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}}) d \theta[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV =( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}}) \theta |^{2 \pi}_{0}[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV =( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}})2 \pi[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV =(\dfrac{81}{64}}-\dfrac{243}{320}})2 \pi[/tex]

[tex]\iiint_E E \sqrt{x^2+y^2} \ dV =(\dfrac{81}{160}})2 \pi[/tex]

[tex]\mathbf{\iiint_E E \sqrt{x^2+y^2} \ dV =\dfrac{81 \ \pi}{80}}[/tex]