Respuesta :

Answer:

[tex]\displaystyle g = \frac{2(h-vt)}{t^2}[/tex]

Step-by-step explanation:

We are given the equation:

[tex]\displaystyle h = vt+\frac{1}{2}gt^2[/tex]

And we want to solve for g, the acceleration due to gravity.

Proceed with algebra:

[tex]\displaystyle \begin{aligned} h & = vt + \frac{1}{2}gt^2 \\ \\ h - vt & = \frac{1}{2}gt^2 \\ \\ gt^2& = 2(h-vt) \\ \\ g &= \frac{2(h-vt)}{t^2}\end{aligned}[/tex]

In conclusion:

[tex]\displaystyle g = \frac{2(h-vt)}{t^2}[/tex]

Answer:

g = [tex]\frac{2(h - vt)}{t^2}[/tex]

Step-by-step explanation:

Given

h = vt + [tex]\frac{1}{2}[/tex] gt² ( subtract vt from both sides )

h - vt = [tex]\frac{1}{2}[/tex] gt² ( multiply both sides by 2 to clear the fraction )

2(h - vt) = gt² ( divide both sides by t² )

[tex]\frac{2(h-vt)}{t^2}[/tex] = g