[tex]\Huge\boxed{\boxed{\dfrac{4}{5}\ \text{meters}}}[/tex]
Let's start by finding the time it takes for the dog to reach a velocity of [tex]4[/tex] m/s.
We can use the following equation, where [tex]v_i[/tex] is initial velocity, [tex]v_f[/tex] is final velocity, [tex]t[/tex] is time, and [tex]a[/tex] is acceleration.
[tex]v_f-v_i=at[/tex]
We're trying to solve for [tex]t[/tex] first, so divide both sides by [tex]a[/tex].
[tex]\dfrac{v_f-v_i}{a}=t[/tex]
Substitute in the known values.
[tex]\dfrac{4-0}{10}=t[/tex]
[tex]\dfrac{4}{10}=t[/tex]
[tex]\dfrac{2}{5}=t[/tex]
Now, we can use the following formula to find the distance.
[tex]s=v_it+\dfrac{1}{2}at^2[/tex]
Substitute in the known values.
[tex]s=0*\dfrac{2}{5}+\dfrac{1}{2}*10*(\frac{2}{5})^2[/tex]
Anything multiplied by [tex]0[/tex] is
[tex]s=\dfrac{1}{2}*10*(\frac{2}{5})^2[/tex]
Just simplify from there.
[tex]s=\dfrac{1}{2}*10*\dfrac{4}{25}[/tex]
[tex]s=5*\dfrac{4}{25}[/tex]
[tex]s=\dfrac{20}{25}[/tex]
[tex]s=\boxed{\dfrac{4}{5}}[/tex]