Respuesta :

Answer:

2.(b) w= 3

3. x= -3 or x= 3

Step-by-step explanation:

2.(b) Method 1:

[tex] \frac{2w - 1}{5} + w + 2 = 2w \\ \frac{2w - 1}{5} = 2w - w - 2 \\ [/tex]

Simplify:

[tex] \frac{2w - 1}{5} = w - 2[/tex]

×5 on both sides:

[tex]2w - 1 = 5(w - 2)[/tex]

Expand:

[tex]2w - 1 = 5w - 10[/tex]

Bring constants to 1 side, w terms to the other:

[tex]5w - 2w = 10 - 1[/tex]

Simplify:

[tex]3w = 9[/tex]

Divide both sides by 3:

[tex]w = 9 \div 3 \\ w = 3[/tex]

Method 2:

[tex] \frac{2w - 1}{5} + w + 2 = 2w[/tex]

Multiply by 5 throughout:

[tex]2w - 1 + 5(w + 2) = 5(2w)[/tex]

Expand:

[tex]2w - 1 + 5w + 10 = 4w[/tex]

Simplify:

[tex]7w - 9 = 4w[/tex]

+9 on both sides:

[tex]7w = 4w + 9[/tex]

-4w on both sides:

[tex]7w - 4w = 9[/tex]

Simplify:

[tex]3w = 9[/tex]

Divide by 3 on both sides:

[tex]w = 3[/tex]

3. [tex] \frac{6x - 12}{3} + 4 = \frac{18}{x} [/tex]

Multiply by 3x on both sides:

[tex] \frac{3x(6x - 12)}{3} + 3x(4) = \frac{3x(18)}{x} \\ x(6x - 12) + 12x = 3(18)[/tex]

Expand:

[tex]x(6x) - x(12) + 12x = 54 \\ 6x^{2} - 12x + 12x = 54 \\[/tex]

Simplify:

[tex]6 {x}^{2} = 54[/tex]

Divide by 6 on both sides:

[tex] {x}^{2} = 9[/tex]

-9 on both sides:

[tex] {x}^{2} - 9 = 0[/tex]

Factorise:

*Since a²-b²= (a +b)(a -b),

[tex] {x}^{2} - {3}^{2} = 0 \\ (x + 3)(x - 3) = 0[/tex]

Thus,

x +3= 0 or x -3= 0

x= -3 or x= 3

Answer:

w = 3

Step-by-step explanation:

(6x-12)/3 + 4 = 18/x

Simplify fraction

2x -4 +4 = 18/x

Combine -4+4=0 Divide by 2 to reduce

x = 9/x

Multiply both sides by x

x² = 9

x = 3, -3

Ver imagen billgkgk