Respuesta :
Answer:
The final speed of the second package is twice as much as the final speed of the first package.
Explanation:
Free Fall Motion
If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:
[tex]v=gt[/tex]
And the distance traveled downwards is:
[tex]\displaystyle y=\frac{gt^2}{2}[/tex]
If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:
[tex]\displaystyle t=\sqrt{\frac{2y}{g}}[/tex]
Replacing into the first equation:
[tex]\displaystyle v=g\sqrt{\frac{2y}{g}}[/tex]
Rationalizing:
[tex]\displaystyle v=\sqrt{2gy}[/tex]
Let's call v1 the final speed of the package dropped from a height H. Thus:
[tex]\displaystyle v_1=\sqrt{2gH}[/tex]
Let v2 be the final speed of the package dropped from a height 4H. Thus:
[tex]\displaystyle v_2=\sqrt{2g(4H)}[/tex]
Taking out the square root of 4:
[tex]\displaystyle v_2=2\sqrt{2gH}[/tex]
Dividing v2/v1 we can compare the final speeds:
[tex]\displaystyle v_2/v_1=\frac{2\sqrt{2gH}}{\sqrt{2gH}}[/tex]
Simplifying:
[tex]\displaystyle v_2/v_1=2[/tex]
The final speed of the second package is twice as much as the final speed of the first package.