3. Continuous review inventory control is being applied to purchase motors for an electric fan manufacturer. Demand is uniformly distributed between 500 and 600 motors per week. Each order costs $250 to prepare, place and receive. Motors cost $2.75/unit and the holding cost rate is 1% per week. Management proposes using the EOQ order quantity and setting reorder points to ensure a 97% fill rate. Find the imputed(implied) cost of a shortage and the expected number of shortages per year.

Respuesta :

Answer:

The expected no. of shortage will be "0.27".

Explanation:

The given values are:

Ordering cost,

O = $250

Holding cost (i),

= 1% (per week)

= 52% (a year)

Cost of goods (C),

= $2.75

The average annual demand is:

[tex]=\frac{600+500}{2}\times 52 \ weeks[/tex]

[tex]=28600 \ units[/tex]

Now,

⇒  [tex]EOQ=\sqrt{(2\times D\times \frac{O}{C}\times i)}[/tex]

              [tex]=\sqrt{2\times 18600\times \frac{250}{2.75}\times 52 \ percent}[/tex]

              [tex]=\sqrt{10000000}[/tex]

              [tex]=3162.27[/tex]

In a year, the number of orders will be:

⇒  [tex]\frac{D}{EOQ}=\frac{28600}{3162.27}[/tex]

            [tex]=9.04 \ i.e., \ 9 \ orders[/tex]

Demand mean will be:

=  [tex]\frac{500+600}{2}[/tex]

=  [tex]550 \ units \ Demand \ SD[/tex]

=  [tex]max[\frac{(Upper \ limit - Mean)}{3} , \frac{(mean-lower \ limit)}{3} ][/tex]

=  [tex]max [\frac{50}{3} ,\frac{50}{3} ][/tex]

=  [tex]16.66 \ units[/tex]

So, in a year, the expected number of the shortages will be:

⇒  [tex]Number \ of \ orders \ in \ a \ year\times fill \ rate[/tex]

⇒  [tex]9\times (1-97 \ percent)[/tex]

⇒  [tex]0.27[/tex]