Answer:
a. 0.85
b. [tex]f(t) =1000(0.85)^t[/tex]
c. $272.49
Step-by-step explanation:
Given that:
Initial investment made, 8 years ago = $1000
Depreciation value each year = 15%
To find:
a. Multiplier
b. Function [tex]f(t)[/tex] to describe the situation.
c. Worth of stock now.
Solution:
a. Depreciation of 15% means the value becomes (100 - 15) % = 85% or 0.85 of the actual value.
Therefore, the multiplier is 0.85.
b.
Every year the value becomes 0.85 times of the actual value.
If it continues for [tex]t[/tex] years, then the values will be:
[tex]f(t) =1000(0.85)^t[/tex]
c. Let us put [tex]t=8 \ years[/tex] to find the worth of stock now.
[tex]\Rightarrow f(8) =1000(0.85)^8\\\Rightarrow \bold{\$272.49}[/tex]
So, the answers are:
a. 0.85
b. [tex]f(t) =1000(0.85)^t[/tex]
c. $272.49