Respuesta :

Step-by-step explanation:

Equation at the end of step 1

(3x2 - 38x) + 24 = 0

STEP2:Trying to factor by splitting the middle term

 2.1     Factoring  3x2-38x+24 

The first term is,  3x2  its coefficient is  3 .

The middle term is,  -38x  its coefficient is  -38 .

The last term, "the constant", is  +24 

Step-1 : Multiply the coefficient of the first term by the constant   3 • 24 = 72 

Step-2 : Find two factors of  72  whose sum equals the coefficient of the middle term, which is   -38 .

     -72   +   -1   =   -73     -36   +   -2   =   -38   That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -36  and  -2 

                     3x2 - 36x - 2x - 24

Step-4 : Add up the first 2 terms, pulling out like factors :

                    3x • (x-12)

              Add up the last 2 terms, pulling out common factors :

                    2 • (x-12)

Step-5 : Add up the four terms of step 4 :

                    (3x-2)  •  (x-12)

             Which is the desired factorization

Equation at the end of step2:

(x - 12) • (3x - 2) = 0

STEP3:Theory - Roots of a product

 3.1    A product of several terms equals zero. 

 When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 We shall now solve each term = 0 separately 

 In other words, we are going to solve as many equations as there are terms in the product 

 Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation:

 3.2      Solve  :    x-12 = 0 

 Add  12  to both sides of the equation : 

                      x = 12

Solving a Single Variable Equation:

Step-by-step explanation:

[tex]if \: (x + 12) = (3x + 2) \\ 12 - 2 = 3x - x \\ 2x = 10 \\ x = 5 \\ \\ \\ if(x + 12)(3x + 2) = 0 \\ x + 12 = 0 \: \: \: or \: \: \: 3x + 2 = 0 \\ x = - 12 \: \: \: or \: \: \: x = - \frac{2}{3} [/tex]