The parent function f(x) = x^2 is vertically stretched by a scale factor of 2, translated 14 units right, and 6 units up. Which equation below represents the new equation? 1. G(x) = 2(x-14)^2 + 6 2. G(x) = 1/2 (x-14)^2 = 6 3. G(x) = 2(x-14)^2 - 6 4. G(x) = 2(x+14)^2 + 6

Respuesta :

Answer:

[tex](1)\; G(x)=2(x-14)^2+6[/tex]

Step-by-step explanation:

Assuming, right and up are positive directions.

The given parent function, [tex]f(x)=x^2[/tex]

Let [tex]f_1(x)[/tex] be the function when the parent function is stretched by a scale factor of 2.

So, [tex]f_1(x)=2f(x)[/tex]

[tex]\Rightarrow f_1(x)=2x^2[/tex]

Let [tex]f_2(x)[/tex] be the function when [tex]f_1(x)[/tex] is translated [tex]14[/tex] units right.

So, [tex]f_2(x)=f_1(x-14)[/tex]

[tex]\Rightarrow f_2(x)=2(x-14)^2[/tex]

Again, let [tex]f_3(x)[/tex] be the function when [tex]f_2(x)[/tex] is translated 4 units up.

So, [tex]f_3(x)=f_2(x)+6[/tex]

[tex]\Rightarrow f_3(x)=2(x-14)^2+6[/tex]

So, the resulting function, [tex]f_3(x)=G(x)=2(x-14)^2+6[/tex].

Hence, option (1) is correct.