Answer:
[tex](1)\; G(x)=2(x-14)^2+6[/tex]
Step-by-step explanation:
Assuming, right and up are positive directions.
The given parent function, [tex]f(x)=x^2[/tex]
Let [tex]f_1(x)[/tex] be the function when the parent function is stretched by a scale factor of 2.
So, [tex]f_1(x)=2f(x)[/tex]
[tex]\Rightarrow f_1(x)=2x^2[/tex]
Let [tex]f_2(x)[/tex] be the function when [tex]f_1(x)[/tex] is translated [tex]14[/tex] units right.
So, [tex]f_2(x)=f_1(x-14)[/tex]
[tex]\Rightarrow f_2(x)=2(x-14)^2[/tex]
Again, let [tex]f_3(x)[/tex] be the function when [tex]f_2(x)[/tex] is translated 4 units up.
So, [tex]f_3(x)=f_2(x)+6[/tex]
[tex]\Rightarrow f_3(x)=2(x-14)^2+6[/tex]
So, the resulting function, [tex]f_3(x)=G(x)=2(x-14)^2+6[/tex].
Hence, option (1) is correct.