contestada

Se lanza una piedra de 3.00 N verticalmente hacia arriba desde el suelo. Se observa que, cuando está 15.0 m sobre el suelo, viaja a 25.0 m/s hacia arriba. Use el teorema trabajo-energía para determinar a) su rapidez en el momento de ser lanzada. b) su altura máxima

Respuesta :

Answer:

(a). The speed at the moment of being thrown is 30.41 m/s.

(b). The maximum height is 47.18 m.

Explanation:

Given that,

Weight of stone = 3.00 N

Height = 15 m

Speed = 25.0 m/s

(a). We need to calculate the speed at the moment of being thrown

Using work energy theorem

[tex]W=\dfrac{1}{2}m(v_{2}^2-v_{1}^2)[/tex]

[tex]-mg\times d=\dfrac{1}{2}m(v_{2}^2-v_{1}^2)[/tex]

Put the value into the formula

[tex]-9.8\times15=\dfrac{1}{2}\times(v_{2}^2-v_{1}^2)[/tex]

[tex]-2\times9.8\times15=25^2-v_{1}^2[/tex]

[tex]-v_{1}^2=-300-25^2[/tex]

[tex]v_{1}=\sqrt{925}[/tex]

[tex]v_{1}=30.41\ m/s[/tex]

(b). We need to calculate the maximum height

Using work energy theorem

[tex][tex]W=\dfrac{1}{2}mv_{2}^2-\dfrac{1}{2}mv_{1}^2[/tex]

[tex]mg\times d=\dfrac{1}{2}mv_{2}^2-\dfrac{1}{2}mv_{1}^2[/tex]

Here, [tex]\dfrac{1}{2}mv_{2}^2[/tex]=0

[tex]-(mg)\times d=\dfrac{1}{2}mv_{1}^2[/tex]

[tex]d=\dfrac{v_{1}^2}{2g}[/tex]

Put the value into the formula

[tex]d=\dfrac{30.41^2}{2\times9.8}[/tex]

[tex]d=47.18\ m[/tex]

Hence, (a). The speed at the moment of being thrown is 30.41 m/s.

(b). The maximum height is 47.18 m.