Step 3: 2x > 10 Step 4: x > 5 What property justifies the work between step 3 and step 4? A. division property of inequality B. inverse property of multiplication C. subtraction property of inequality D. transitive property of inequality

Respuesta :

Answer:

A. Division property of inequality.

Step-by-step explanation:

Let be [tex]2\cdot x > 10[/tex], we proceed to show the appropriate procedure to step 4:

1) [tex]2\cdot x >10[/tex] Given

2) [tex]x > 5[/tex] Compatibility with multiplication/Existence of multiplicative inverse/Associative property/Modulative property/Result. (Division property of inequality)

In consequence, the division property of inequality which states that:

[tex]\forall\, a, b, c \in \mathbb{R}[/tex]. If [tex]c > 0[/tex], then:

[tex]a> b\,\longrightarrow a\cdot c > b\cdot c \,\lor\, a<b \longrightarrow a\cdot c < b\cdot c[/tex]

But if [tex]c < 0[/tex], then:

[tex]a> b\,\longrightarrow a\cdot c < b\cdot c \,\lor\, a<b \longrightarrow a\cdot c > b\cdot c[/tex]

Hence, correct answer is A.