in the expression of (x + 1)^n, the coefficient of the x^3 term is two times the coefficient of the x^2 term. Find the value of n.

Respuesta :

According to Khayyam-Pascal triangle ,

the value of n is 8.

[tex] look \: \\ \\ {(x + 1)}^{8} = {x}^{8} + 8 {x}^{7} + 28 {x}^{6} + 56 {x}^{5} + 70 {x}^{4} + 56 {x}^{3} + 28 {x}^{2} + 8x + 1 \\ \frac{56}{28} = 2 [/tex]

Recall the binomial theorem:

[tex](a+b)^n=\displaystyle\sum_{k=0}^n\binom nk a^k b^{n-k}[/tex]

where

[tex]\dbinom nk=\dfrac{n!}{k!(n-k)!}[/tex]

is the binomial coefficient. So

[tex](x+1)^n=\displaystyle\sum_{k=0}^n\binom nk x^k[/tex]

The x² term occurs for k = 2, which has coefficient

[tex]\dbinom n2=\dfrac{n!}{2!(n-2)!}=\dfrac{n(n-1)}2[/tex]

The x³ occurs for k = 3, with coefficient

[tex]\dbinom n3=\dfrac{n!}{3!(n-3)!}=\dfrac{n(n-1)(n-2)}6[/tex]

The latter coefficient is twice the other one, so that

[tex]\dfrac{n(n-1)(n-2)}6=2\cdot\dfrac{n(n-1)}2[/tex]

Solve for n :

[tex]\dfrac{n(n-1)(n-2)}6=n(n-1)[/tex]

[tex]n(n-1)(n-2)=6n(n-1)[/tex]

[tex]n-2=6[/tex]

[tex]\boxed{n=8}[/tex]