Respuesta :
Answer:
[tex] \sqrt{f {}^{2} } = \sqrt{ \frac{9}{49} } [/tex]
[tex]f = \frac{ \sqrt{9} }{ \sqrt{49} } [/tex]
[tex]f = \frac{3}{7} [/tex] or -3/7
Answer:
[tex]f=-\frac{3}{7},\frac{3}{7}[/tex]
Step-by-step explanation:
[tex]f^2=\frac{9}{49}[/tex]
Square root both sides of the equation:
[tex]\sqrt{f^2} =\sqrt{\frac{9}{49} }[/tex]
The square root of [tex]f^2[/tex] is [tex]f[/tex], so let's rewrite the equation:
[tex]f=\sqrt{\frac{9}{49} }[/tex]
Now, we can make this easier on ourselves by noticing that both the numerator and denominator of the fraction are square numbers, so rewrite the equation:
[tex]f=\frac{\sqrt{9} }{\sqrt{49}}[/tex]
Find the square root of 9 (-3 & 3), and the square root of 49 (-7 & 7). Due to the possibility of the positive or negative solution, there will be two:
[tex]f=-\frac{3}{7} ,\frac{3}{7}[/tex]