Respuesta :

Erlea

Answer:

[tex] \sqrt{f {}^{2} } = \sqrt{ \frac{9}{49} } [/tex]

[tex]f = \frac{ \sqrt{9} }{ \sqrt{49} } [/tex]

[tex]f = \frac{3}{7} [/tex] or -3/7

Answer:

[tex]f=-\frac{3}{7},\frac{3}{7}[/tex]

Step-by-step explanation:

[tex]f^2=\frac{9}{49}[/tex]

Square root both sides of the equation:

[tex]\sqrt{f^2} =\sqrt{\frac{9}{49} }[/tex]

The square root of [tex]f^2[/tex] is [tex]f[/tex], so let's rewrite the equation:

[tex]f=\sqrt{\frac{9}{49} }[/tex]

Now, we can make this easier on ourselves by noticing that both the numerator and denominator of the fraction are square numbers, so rewrite the equation:

[tex]f=\frac{\sqrt{9} }{\sqrt{49}}[/tex]

Find the square root of 9 (-3 & 3), and the square root of 49 (-7 & 7). Due to the possibility of the positive or negative solution, there will be two:

[tex]f=-\frac{3}{7} ,\frac{3}{7}[/tex]