Respuesta :

Given parameters:

Midpoint of AB =  M(3, -1)

Coordinates of A = (5,1)

Unknown:

Coordinates of B = ?

Solution:

To find the mid point of any line, we use the expression below;

              [tex]x_{m} = \frac{x_{1} + x_{2} }{2}[/tex]    and [tex]y_{m} = \frac{y_{1} + y_{2} }{2}[/tex]

where [tex]x_{m}[/tex]  and [tex]y_{m}[/tex] = coordinates of the mid points = 3 and -1

   x₁  = 5 and y₁ = 1

  x₂ = ?  and y₂ = ?

Now let us input the variables and solve,

            3  = [tex]\frac{5 + x_{2} }{2}[/tex]           and     -1 = [tex]\frac{1 + y_{2} }{2}[/tex]

    5 +  x₂  = 6                          -2 = 1  + y₂

            x₂ = 1                             y₂ = -2 -1 = -3

The coordinates of B = 1, -3