Respuesta :

Answer:

The ratio of the first term to the common difference is 1 : 2

Step-by-step explanation:

The rule of the sum of the AP is

[tex]S_{n}=\frac{n}{2}[2a+(n-1)d][/tex] , where

a is the first number

d is the common difference

n is the position of the number

∵ [tex]S_{10}[/tex] = 4 × [tex]S_{5}[/tex] ⇒ (1)

→ Find [tex]S_{10}[/tex]  and [tex]S_{5}[/tex]

∵ In [tex]S_{10}[/tex] n = 10

∴ [tex]S_{10}=\frac{10}{2}[2a+(10-1)d][/tex]

∴ [tex]S_{10}=5[2a+9d][/tex]

[tex]S_{10}[/tex] = 10a + 45d ⇒ (2)

∵ In [tex]S_{5}[/tex] n = 5

∴ [tex]S_{5}=\frac{5}{2}[2a+(5-1)d][/tex]

∴ [tex]S_{5}=2.5[2a+4d][/tex]

[tex]S_{5}[/tex] = 5a + 10d ⇒ (3)

→ Substitute (2) and (3) in (1)

∵ 10a + 45d = 4[5a + 10d]

∴ 10a +45d = 20a + 40d

→ Subtract 40d from both sides

∴ 10a + 45d - 40d = 20a + 40d - 40d

∴ 10a + 5d = 20a

→ Subtract 10a from both sides

∴ 10a - 10a + 5d = 20a - 10a

∴ 5d = 10a

→ Divide both sides by 5

d = 2a

→ That means d is twice a or a is half d

a : d = 1 : 2

The ratio of the first term to the common difference is 1 : 2