Respuesta :

Answer:

[tex]f(x)=x^2+9x-10[/tex]

Step-by-step explanation:

Standard Form of Quadratic Function

The standard representation of a quadratic function is:

[tex]f(x)=ax^2+bx+c[/tex]

where a,b, and c are constants.

The factored form of a quadratic equation is:

[tex]f(x)=a(x-\alpha)(x-\beta)[/tex]

Where [tex]\alpha[/tex] and [tex]\beta[/tex] are the roots or zeros of f.

The question gives the zeros of the function: 1 and -10. This makes our function look like:

[tex]f(x)=a(x-1)[x-(-10)][/tex]

[tex]f(x)=a(x-1)(x+10)[/tex]

Operating:

[tex]f(x)=a(x^2+10x-x-10)[/tex]

Joining like terms:

[tex]f(x)=a(x^2+9x-10)[/tex]

Since we are not given any more conditions, we choose the value of a=1, thus. the required function is:

[tex]\boxed{f(x)=x^2+9x-10}[/tex]