Respuesta :
Answer:
Algebra 1 = 12 books
Algebra 2 = 5 books
Geometry = 6 books
Step-by-step explanation:
Given
Represent
Algebra 1 with A
Algebra 2 with B
Geometry with C
For the quantity
[tex]A + B + C = 23[/tex]
To represent the weight, we have that:
[tex]A = 4lb[/tex]
[tex]B = 5lb[/tex]
[tex]C = 3lb[/tex]
[tex]Total = 93lb[/tex]
This gives:
[tex]4A + 3B + 5C = 93[/tex]
The last sentence in the question can be represented with:
[tex]C + B = A - 1[/tex]
So, the expressions to work with are
[tex]A + B + C = 23[/tex] --- (1)
[tex]4A + 3B + 5C = 93[/tex] --- (2)
[tex]C + B = A - 1[/tex] --- (3)
Substitute A - 1 for B + C in (1)
[tex]A + B + C = 23[/tex]
[tex]A + A - 1 = 23[/tex]
[tex]2A - 1 = 23[/tex]
Solve for 2A
[tex]2A = 23 + 1[/tex]
[tex]2A = 24[/tex]
Solve for A
[tex]A = 12[/tex]
Substitute 12 for A in the (2) & (3)
[tex]4A + 3B + 5C = 93[/tex]
[tex]4 * 12 + 3B + 5C = 93[/tex]
[tex]48 + 3B + 5C = 93[/tex]
[tex]3B + 5C = 93 - 48[/tex]
[tex]3B + 5C = 45[/tex] ---- (4)
[tex]C + B = A - 1[/tex]
[tex]C + B = 12 - 1[/tex]
[tex]C + B = 11[/tex]
Make C the subject
[tex]C = 11 - B[/tex] ----- (5)
Substitute 11 - B for C in (4)
[tex]3B + 5C = 45[/tex]
[tex]3B + 5(11 - B) = 45[/tex]
[tex]3B + 55 - 5B = 45[/tex]
Collect Like Terms
[tex]3B - 5B = 45 - 55[/tex]
[tex]-2B = -10[/tex]
Solve for B
[tex]B = -10/-2[/tex]
[tex]B = 5[/tex]
Substitute 5 for B in (5)
[tex]C = 11 - B[/tex]
[tex]C = 11- 5[/tex]
[tex]C = 6[/tex]