Answer:
The mortgage payment will be "$9258".
Explanation:
The given values are:
Principal (P)
= 900000
Interest rate (i)
= [tex]\frac{0.12}{12}[/tex]
= [tex]0.01[/tex]
Total number of monthly payments (n)
= [tex]30\times 12[/tex]
= [tex]360[/tex]
The monthly payment `for the 30 years loan will be:
⇒ [tex]M= P\times \frac{( i\times ( 1 + i ) ^ n )}{( ( ( 1 + i ) ^ n ) - 1 )}[/tex]
On putting the values, we get
[tex]= 900000\times \frac{( 0.01\times ( 1 + 0.01 ) ^ {360} )}{( ( ( 1 + 0.01 ) ^ {360} ) - 1 )}[/tex]
[tex]=9257.51[/tex]
[tex]=9258[/tex]
Now,
The total amount paid will be:
[tex]= 9258\times 360[/tex]
[tex]=33,32,880[/tex] ($)