Respuesta :
Answer:
Follows are the solution to this question:
Step-by-step explanation:
Technician selects three out of 5 systems
In C(5,3)=10ways, this can be achieved
In part a:
Space sample chooses 3 of a 5 systems
[tex](M_1, \ M_2,\ M_3),[/tex][tex](M_1,M_2,M_4) \ (M_1,M_2,M_5) \ (M_1,M_3,M_4) \ (M_1,M_3,M_5),[/tex][tex](M_1,M_4,M_5) \ (M_2,M_3,M_4)\ (M_2,M_3,M_5) \ (M_2,M_4,M_5),(M_3,M_4,M_5)}[/tex]
In point b:
A =MODULE WHICH INCLUDE M1 minimal amount of effort
Outcomes probable =
[tex](M_1,M_2,M_3),\ (M_1,M_2,M_4) \ (M_1,M_2,M_5)\ (M_1,M_3,M_4)\\\\(M_1,M_3,M_5),\ (M_1,M_4,M)5)\ =\ 6[/tex]
[tex]\to p(A)=\frac{6}{10}\\\\[/tex]
[tex]=0.6[/tex]
In point c:
B = highest effort that is [tex]M_5[/tex]
Potential result=
[tex](M_1,M_2,M_5) \ (M_1,M_3,M_5) \ (M_2,M_3,M_5)\(M_2,M_4,M_5) \\ (M_2,M_4,M_5), \ (M_3,M_4,M_5) \ =\ 6 \\\\[/tex]
[tex]\to B= \frac{6}{10} \\\\[/tex]
[tex]=0.6[/tex]
[tex]\to P(B)=10[/tex]
In point d:
[tex]\to \ A \ intersection \ B=(M_1,M_2,M_5), \ (M_1,M_3,M_5) \ ,(M_1,M_4,M_5)[/tex]
[tex]\to A (A \ intersection \ B) = \frac{3}{10} \\\\\ \ \ \ \ \[/tex]
[tex]=0.3[/tex]
In point e:
[tex]\to (A \cup B) = (M_1,M_2,M_3),\ (M_1,M_2,M_4)\ (M_1,M_2,M_5)(M_1,M_3,M_4)\ (M_1,M_3,M_5), \\ (M_1,M_4,M_5)\ (M_2,M_3,M_5) \ (M_2,M_4,M_5),(M_3,M_4,M_5) \ = \ 9[/tex][tex]\to P(A \cap B)=\frac{9}{10}[/tex]
[tex]= 0.9[/tex]
In point f:
[tex]\to (A\cap B) = \frac{3}{10}[/tex]
[tex]= 0.3[/tex]
In point g:
[tex]\to (A \cup B) = \frac{7}{10}[/tex]
[tex]=0.7[/tex]
In point h:
[tex]\to p(A \cap B) = 0.3 \neq 0[/tex]