Answer:
Fifth Score = 87
Sixth Score = 95
Step-by-step explanation:
Given
[tex]Average = 85[/tex]
[tex]Scores = 83, 78, 87, 80[/tex]
[tex]Fifth\ score = x[/tex]
[tex]Sixth\ Score = 8 + x[/tex]
Required
Set up an equation
Solve for the fifth and sixth score
Average is calculated as thus:
[tex]Average = \frac{\sum x}{n}[/tex]
[tex]Average = \frac{83 +78 + 87 + 80 + x + 8 + x}{6}[/tex]
Substitute 85 for Average
[tex]85 = \frac{83 +78 + 87 + 80 + x + 8 + x}{6}[/tex]
[tex]85 = \frac{83 +78 + 87 + 80 + 8+ x + x}{6}[/tex]
[tex]85 = \frac{336+ 2x}{6}[/tex]
Multiply both sides by 6
[tex]85 * 6 = 336 + 2x[/tex]
[tex]510= 336 + 2x[/tex]
Solve for 2x
[tex]2x = 510 - 336[/tex]
[tex]2x = 174[/tex]
Solve for x
[tex]x = 174/2[/tex]
[tex]x = 87[/tex]
Hence:
[tex]Fifth\ Score = 87[/tex]
[tex]Sixth\ Score = 87 + 8[/tex]
[tex]Sixth\ Score = 95[/tex]