Answer:
Kindly check explanation
Explanation:
Given the data:
Period Demand F1 F2
1 68 63 66
2 75 70 67
3 70 75 70
4 74 69 72
5 69 70 73
6 72 68 75
7 80 70 77
8 78 74 84
Mean absolute deviation (MAD) for F1:
P___Demand(D) __F1__F2___|D - F1|___|D-F2|
1____ 68 _______63 __66____5______ 2
2____75_______ 70__ 67____ 5______ 8
3____70_______ 75__ 70____ 5______ 0
4____74_______ 69__ 72____ 5______ 2
5____69_______ 70__ 73____ 1______ 4
6____72_______ 68__ 75____ 4______3
7____80_______ 70__ 77____ 10 _____3
8____78_______ 74__ 84____ 4______6
Mean absolute deviation (MAD) For F1 :
Σ(|D - F1|)/n :
(5 + 5 + 5 + 5 + 1 + 4 + 10 + 4) / 8
= 39 / 8
= 4.875
Mean absolute deviation (MAD) For F2 :
Σ(|D - F2|)/n :
(2 + 8 + 0 + 2 + 4 + 3 + 3 + 6) / 8
= 28 / 8
= 3.50
F2 seems to be more accurate has it has a Lower MAD value