Respuesta :
Answer:
1. m³ + m
= m( m² + 1) [ a² + b²]
= (a-b)² + 2ab
= m { (m –1)² + 2× m × 1 }
= m { ( m–1)² + 2m}
2. 25 – y² [ a² – b²]
= 5² – y²
= (5+y) (5–y)
3. x² + 3x –28 [ middle term factorisation]
= x² + 7x –4x –28
= x( x +7) –4 ( x + 7 )
= ( x–4) (x+7)
➊ Factorise :- [tex]\sf{m^{3} + m}[/tex]
Solution :-
[tex]→ \ \ \sf\purple{m^{3} + m}[/tex]
- Factor out m from the expression
[tex]→\:\:\bf\red{ m \times (m^{2} + 1)}[/tex]
______________________
➋ Factorise :- [tex]\sf{25-y^{2}}[/tex]
Solution :-
[tex]→\:\:\sf\purple{25-y^{2}}[/tex]
- Write the number in the exponential form with an exponent of 2
[tex]→\:\:\sf\green{5^{2} - y^{2}}[/tex]
- Using a²-b² = (a-b)(a+b), factor the expression
[tex]→\:\:\bf\red{(5-y)\times (5+y)}[/tex]
______________________
➌ Factorise :- [tex]\sf{x^{2}+3x - 28}[/tex]
Solution :-
[tex]→\:\:\sf\purple{x^{2}+3x - 28}[/tex]
- Rewrite 3x as a difference
[tex]→\:\:\sf\green{x^{2}+7x-4x-28}[/tex]
- Factor the expressions
[tex]→\:\:\sf\orange{x \times (x +7) -4 (x+7)}[/tex]
- Factor out x + 7 from the expression
[tex]→\:\:\bf\red{(x + 7)\times (x - 4)}[/tex]