Respuesta :

Answer:

1. m³ + m

= m( m² + 1) [ a² + b²]

= (a-b)² + 2ab

= m { (m –1)² + 2× m × 1 }

= m { ( m–1)² + 2m}

2. 25 – y² [ a² – b²]

= 5² – y²

= (5+y) (5–y)

3. x² + 3x –28 [ middle term factorisation]

= x² + 7x –4x –28

= x( x +7) –4 ( x + 7 )

= ( x–4) (x+7)

Factorise :- [tex]\sf{m^{3} + m}[/tex]

Solution :-

[tex]→ \ \ \sf\purple{m^{3} + m}[/tex]

  • Factor out m from the expression

[tex]→\:\:\bf\red{ m \times (m^{2} + 1)}[/tex]

______________________

Factorise :- [tex]\sf{25-y^{2}}[/tex]

Solution :-

[tex]→\:\:\sf\purple{25-y^{2}}[/tex]

  • Write the number in the exponential form with an exponent of 2

[tex]→\:\:\sf\green{5^{2} - y^{2}}[/tex]

  • Using a²-b² = (a-b)(a+b), factor the expression

[tex]→\:\:\bf\red{(5-y)\times (5+y)}[/tex]

______________________

Factorise :- [tex]\sf{x^{2}+3x - 28}[/tex]

Solution :-

[tex]→\:\:\sf\purple{x^{2}+3x - 28}[/tex]

  • Rewrite 3x as a difference

[tex]→\:\:\sf\green{x^{2}+7x-4x-28}[/tex]

  • Factor the expressions

[tex]→\:\:\sf\orange{x \times (x +7) -4 (x+7)}[/tex]

  • Factor out x + 7 from the expression

[tex]→\:\:\bf\red{(x + 7)\times (x - 4)}[/tex]