Respuesta :
Answer:
[tex]a=4\frac{m}{s^2}[/tex]
Explanation:
Hello.
In this case, for this uniformly accelerated motion in which the car starts from rest at 0 m/s and travels 18 m in 3.0 s, we can compute the acceleration by using the following equation:
[tex]x_f=x_0+v_0t+\frac{1}{2}at^2[/tex]
Whereas the final distance is 18 m, the initial distance is 0 m, the initial velocity is 0 m/s and the time is 3.0 s, that is why the acceleration turns out:
[tex]a=\frac{2(x_f-v_ot)}{t^2} =\frac{2(18m-0m/s*3.0s)}{(3.0s)^2}\\ \\a=4\frac{m}{s^2}[/tex]
Best regards.
Given the distance travelled and the time taken, the magnitude of the car's acceleration is 4m/s²
Given the data in the question;
Since the car starts from rest,
- Initial velocity; [tex]u = 0m/s[/tex]
- Distance travelled; [tex]s = 18m[/tex]
- time taken; [tex]t = 3.0s[/tex]
Acceleration; [tex]a = \ ?[/tex]
To determine the magnitude of the car's acceleration
We use the Second Equation of Motion:
[tex]s = ut + \frac{1}{2}at^2[/tex]
Where s is the speed, u is the initial velocity, a is the acceleration and t is the time.
We substitute our values into the equation and solve for "a"
[tex]18m = (0m/s\ * 3.0s) + (\frac{1}{2}\ *\ a\ *\ (3.0s)^2) \\\\18m = 4.5s^2 \ *\ a\\\\a = \frac{18m}{4.5s^2} \\\\a = 4 m/s^2[/tex]
Therefore, the magnitude of the car's acceleration is 4m/s²
Learn more: https://brainly.com/question/10428597