Respuesta :

Given:

The given equation is

[tex]y-3=(2-x)^2[/tex]

To find:

The vertex, focus, and directrix.

Solution:

The equation of a parabola is

[tex]y-k=a(x-h)^2[/tex]     ...(i)

where, (h,k) is vertex, [tex]\left(h,k+\dfrac{1}{4a}\right)[/tex] and directrix is [tex]y=k-\dfrac{1}{4a}[/tex]

We have,

[tex]y-3=(2-x)^2[/tex]

It can be written as

[tex]y-3=(-(x-2))^2[/tex]

[tex]y-3=(x-2)^2[/tex]    ...(ii)

On comparing (i) and (ii), we get

[tex]h=2,k=3,a=1[/tex]

Vertex of the parabola is (2,3).

[tex]Focus=\left(2,3+\dfrac{1}{4(1)}\right)[/tex]

[tex]Focus=\left(2,3+\dfrac{1}{4}\right)[/tex]

[tex]Focus=\left(2,\dfrac{13}{4}\right)[/tex]

Therefore, the focus of the parabola is [tex]\left(2,\dfrac{13}{4}\right)[/tex].

Directrix of the parabola is

[tex]y=3-\dfrac{1}{4(1)}[/tex]

[tex]y=3-\dfrac{1}{4}[/tex]

[tex]y=\dfrac{11}{4}[/tex]

Therefore, the directrix of the parabola is [tex]y=\dfrac{11}{4}[/tex].