While traveling across flat land, you notice a mountain directly in front of you. The angle of elevation to the peak is 1.5°. After you drive 23 miles closer to the mountain, the angle of elevation is 13°. Approximate the height of the mountain.​

Respuesta :

Answer:

0.68 miles

Step-by-step explanation:

Let's say that the height of the mountain is h

The distance between the mountain and the car, after moving 23 miles closer to the mountain, will be x (let's pose it as x for now)

tan(1.5°) = opposite/adjacent = h/23 + a

=> h = (23 + a)tan(1.5°) ---- (1)

tan(13°) = h/a

=> h = a(tan(13°)) ---- (2)

Now since h is common among the two equations, we can equate them;

[tex]\left(23+a\right)\tan \left(1.5^{\circ \:}\right)=a\left(\tan \left(13^{\circ \:}\right)\right),\\23\tan \left(1.5^{\circ \:}\right)+\tan \left(1.5^{\circ \:}\right)a=\tan \left(13^{\circ \:}\right)a,\\\\\tan \left(1.5^{\circ \:}\right)a-\tan \left(13^{\circ \:}\right)a=-23\tan \left(1.5^{\circ \:}\right),\\\left(\tan \left(1.5^{\circ \:}\right)-\tan \left(13^{\circ \:}\right)\right)a=-23\tan \left(1.5^{\circ \:}\right),\\\\[/tex]

[tex]a=\frac{23\tan \left(1.5^{\circ \:}\right)}{\tan \left(13^{\circ \:}\right)-\tan \left(1.5^{\circ \:}\right)} = 2.94249...[/tex]

[tex]h = 2.94249tan\left(13^{\circ }\right) = 0.67932\dots[/tex]

The height of the mountain ≈ 0.68 miles