Respuesta :

First, expand the bracket

2.1s + 2.8 - 1.1s = 7.9

Next, collect like terms

s + 2.8 = 7.9

Lastly subtract 2.8 from 7.9 to get your answer.

s = 5.1

(Hope this helps! ^^)

Answer:

[tex]\boxed {s = 5.1}[/tex]

Step-by-step explanation:

Solve for the value of [tex]s[/tex]:

[tex]0.7(3s + 4) - 1.1s = 7.9[/tex]

-Use Distributive Property:

[tex]0.7(3s + 4) - 1.1s = 7.9[/tex]

[tex]2.1s + 2.8 - 1.1s = 7.9[/tex]

-Combine like terms:

[tex]2.1s + 2.8 - 1.1s = 7.9[/tex]

[tex]s + 2.8 = 7.9[/tex]

-Subtract [tex]2.8[/tex] to both sides:

[tex]s + 2.8 - 2.8 = 7.9 - 2.8[/tex]

[tex]\boxed {s = 5.1}[/tex]

So, the value of [tex]x[/tex] is [tex]5.1[/tex].