Respuesta :
First, expand the bracket
2.1s + 2.8 - 1.1s = 7.9
Next, collect like terms
s + 2.8 = 7.9
Lastly subtract 2.8 from 7.9 to get your answer.
s = 5.1
(Hope this helps! ^^)
Answer:
[tex]\boxed {s = 5.1}[/tex]
Step-by-step explanation:
Solve for the value of [tex]s[/tex]:
[tex]0.7(3s + 4) - 1.1s = 7.9[/tex]
-Use Distributive Property:
[tex]0.7(3s + 4) - 1.1s = 7.9[/tex]
[tex]2.1s + 2.8 - 1.1s = 7.9[/tex]
-Combine like terms:
[tex]2.1s + 2.8 - 1.1s = 7.9[/tex]
[tex]s + 2.8 = 7.9[/tex]
-Subtract [tex]2.8[/tex] to both sides:
[tex]s + 2.8 - 2.8 = 7.9 - 2.8[/tex]
[tex]\boxed {s = 5.1}[/tex]
So, the value of [tex]x[/tex] is [tex]5.1[/tex].