Answer:
[tex]d = \sqrt{13}[/tex]
Step-by-step explanation:
Distance Formula: [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Simply plug in the 2 coordinates into the distance formula to find distance d:
[tex]d = \sqrt{(7-4)^2+(-3-(-1))^2}[/tex]
[tex]d = \sqrt{(3)^2+(-3+1)^2}[/tex]
[tex]d = \sqrt{9+(-2)^2}[/tex]
[tex]d = \sqrt{9+4}[/tex]
[tex]d = \sqrt{13}[/tex]