A) Solve the Gompertz equation
dy dt = ryln(K/y)
subject to the initial condition y(0) = y0.
B) For the given data r = 0.73 per year, K = 80,300 kg, and y0 K = 0.25. Use the Gompertz model to find the predicted value of y(4).
C) For the same data as in part (b), use the Gompertz model to find the time τ at which y(τ) = 0.77K.

Respuesta :

Answer:

a) [tex]y = Ke^{ln(\frac{y_0}{K})e^{-rt} }[/tex]

b) [tex]y(4) = 1,082.043 kg[/tex]

c) [tex]t = 2.286 years[/tex]

Step-by-step explanation:

Find the step by step solution to the question in the attachment.

Ver imagen abidemiokin
Ver imagen abidemiokin
Ver imagen abidemiokin