Respuesta :

Answer:

[tex]\displaystyle x\in \left(-\frac{40}{13},\frac{48}{13}\right)[/tex]

Step-by-step explanation:

Inequalities with Absolute Value

We must recall the following rule:

[tex]\text{If }|M|<N,\ N>0[/tex]

Then:

[tex]-N<M<N[/tex]

We have the following inequality:

[tex]|13x-4|+12 < 56[/tex]

Subtracting 12:

[tex]|13x-4|< 56-12[/tex]

[tex]|13x-4|< 44[/tex]

Applying the rule:

[tex]-44<13x-4<44[/tex]

Adding 4:

[tex]-44+4<13x<44+4[/tex]

Operating:

[tex]-40<13x<48[/tex]

Dividing by 13:

[tex]\displaystyle -\frac{40}{13}<x<\frac{48}{13}[/tex]

The solution expressed in interval form is:

[tex]\boxed{\displaystyle x\in \left(-\frac{40}{13},\frac{48}{13}\right)}[/tex]