Respuesta :

Answer:

[tex]V=80x-36x^2+4x^3[/tex]

Step-by-step explanation:

The volume of a box of dimensions a, b, c is:

V=abc

The box shown in the image has dimensions 8-2x, 10-2x, x, thus its volume is:

[tex]V=(8-2x)(10-2x)(x)[/tex]

Operating the first two brackets:

[tex]V=(80-16x-20x+4x^2)(x)[/tex]

Joining like terms:

[tex]V=(80-36x+4x^2)(x)[/tex]

Multiplying again:

[tex]V=80x-36x^2+4x^3[/tex]

The volume of the box is

[tex]\boxed{V=80x-36x^2+4x^3}[/tex]