Respuesta :

Answer:

[tex](f\circ g)(4)=31[/tex]

Step-by-step explanation:

Composite Function

Given f(x) and g(x) real functions, the composite function named fog(x) is defined as:

[tex](f\circ g)(x)=f(g(x))[/tex]

For practical purposes, it can be found by substituting g into f.

We have:

[tex]f(x)=3x+1[/tex]

[tex]g(x)=x^2-6[/tex]

Computing the composite function:

[tex](f\circ g)(x)=f(g(x))=3(x^2-6)+1[/tex]

Operating:

[tex](f\circ g)(x)=3x^2-18+1[/tex]

Operating:

[tex](f\circ g)(x)=3x^2-17[/tex]

Now evaluate for x=4

[tex](f\circ g)(4)=3(4)^2-17=48-17[/tex]

[tex]\boxed{(f\circ g)(4)=31}[/tex]