Respuesta :

Answer:

[tex] y = 15x + 20 [/tex]

x = 11, when y = 185

Step-by-step explanation:

Given:

(0, 20);

(2, 50)

Required:

Equation of the line;

Value of x, when y = 185

SOLUTION:

Equation of the line can be written using the slope-intercept formula, given as, [tex] y = mx + b [/tex].

m = slope = [tex] \frac{y_2 - y_1}{x_2 - x_1} =\frac{50 - 20}{2 - 0} = \frac{30}{2} = 15 [/tex]

b = y-intercept = the pointt at which the line cuts the y-axis = 20

Plug in the value into the formula to get the equation:

[tex] y = mx + b [/tex]

[tex] y = 15x + 20 [/tex]

Use this equation to solve for x, when y = 185

[tex] y = 15x + 20 [/tex]

[tex] 185 = 15x + 20 [/tex] (substitution)

[tex] 185 - 20 = 15x + 20 - 20 [/tex]

[tex] 165 = 15x [/tex]

[tex] \frac{165}{15} = \frac{15x}{15} [/tex]

[tex] 11 = x [/tex]

x = 11, when y = 185