Answer:
[tex]\overline{DE} \cong \overline{GF}[/tex] and [tex]\overline{DG} \cong \overline{EF}[/tex] by CPCTC
Step-by-step explanation:
The given information are;
The shape of the given polygon DEFG = Parallelogram with diagonal DF
Therefore, we have;
Response area
[tex]\overline{DE} \left | \right | \overline{GF}[/tex] and [tex]\overline{DG} \left | \right | \overline{EF}[/tex] (Opposite sides of a parallelogram are parallel)
∠GFD ≅ ∠EFD (Alternate interior angles)
∠DFG ≅ ∠FDE (Alternate interior angles)
[tex]\overline{DF} \cong \overline{DF}[/tex] (By the reflexive property of congruence)
Therefore
ΔDGF ≅ ΔFED (Angle-Side-Angle (ASA) condition of congruency)
Which gives;
[tex]\overline{DE} \cong \overline{GF}[/tex] and [tex]\overline{DG} \cong \overline{EF}[/tex] (Congruent Parts of Congruent Triangles are Congruent (CPCTC).