Respuesta :

Answer:

  7) 5 m/s

  8) 1.5 m/s

  9) -9 m/s^2

  10) 2.2 m/s

  11) 5 s

Explanation:

These problems make use of the relations:

  a = ∆v/∆t

  d = 1/2at^2 . . . . acceleration to/from rest

  v^2 = 2ad . . . . . acceleration to/from rest

In each case, choose the formula appropriate to the question, fill in the given values, and solve for what's missing.

__

7) v^2 = 2ad

  v = √(2(9.8 m/s^2)(1.5 m)) = √(29.4 m^2/s^2) ≈ 5 m/s

__

8) d = 1/2at^2

  a = 2d/t^2 = 2(75 m)/(10 s)^2 = 1.5 m/s^2

__

9) a = ∆v/∆t

  a = (-45 m/s)/(5 s) = -9 m/s^2

__

10) a = ∆v/∆t

  ∆v = a·∆t = (0.09 m/s^2)(10 s) = 0.9 m/s

Vivian's final speed is the initial speed plus the change in speed:

  1.3 m/s + 0.9 m/s = 2.2 m/s

__

11) a = ∆v/∆t

  ∆t = ∆v/a = (0.50 cm/s -0.75 cm/s)/(-0.05 cm/s^2) = -.25/-.05 s = 5 s