Answer:
[tex]\frac{4}{5}[/tex]
Step-by-step explanation:
let the original fraction be
[tex]\frac{n}{n+1}[/tex] ( with denominator 1 more than numerator )
Subtracting 3 from numerator/ denominator gives
[tex]\frac{n-3}{n+1-3}[/tex] = [tex]\frac{n-3}{n-2}[/tex]
Given that the fraction is now equivalent to [tex]\frac{1}{2}[/tex] , then
[tex]\frac{n-3}{n-2}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
2(n - 3) = n - 2, distribute left side
2n - 6 = n - 2 ( subtract n from both sides )
n - 6 = - 2 ( add 6 to both sides )
n = 4
and n + 1 = 4 + 1 = 5
Thus original fraction is [tex]\frac{4}{5}[/tex]