please solve this question!!

Answer: see proof below
Step-by-step explanation:
Use the following Half-Angle Identities:
sin² A = (1 - cos 2A)/2
cos² A = (1 + cos 2A)/2
Proof LHS → RHS:
LHS: sin⁴ A
Expand: sin² A · sin² A
[tex]\text{Half-Angle:}\qquad \qquad \bigg(\dfrac{1-\cos (2A)}{2}\bigg)\bigg(\dfrac{1-\cos (2A)}{2}\bigg)[/tex]
[tex]\text{Distribute:}\qquad \qquad \dfrac{1-2\cos (2A)+\cos^2 (2A)}{4}[/tex]
[tex]\text{Half-Angle:}\qquad \qquad \dfrac{1-2\cos (2A)+\frac{1+\cos (2\cdot 2A)}{2}}{4}[/tex]
[tex]\text{Simplify:}\qquad \qquad \dfrac{\frac{2}{2}[1-2\cos (2A)]+\frac{1+\cos (4A)}{2}}{4}[/tex]
[tex]=\dfrac{2-4\cos (2A) + 1 + \cos (4A)}{8}[/tex]
[tex]=\dfrac{1}{8}\bigg(3-4\cos (2A)+\cos (4A)\bigg)[/tex]
LHS = RHS [tex]\checkmark[/tex]
Let's start from LHS...
LHS = sin^4A = sin^2A * sin^2A
We can apply a few formulas here;
cos 2A = 1 - 2sin^2A
sin^2A = (1 - cos2A) / 2
cos2A = 2cos^2A - 1
cos^2A = (1 + cos2A) / 2
According to the second formula, sin^2A * sin^2A = (1 - cos2A) / 2 * (1 - cos2A) / 2.
(1 - cos2A) / 2 * (1 - cos2A) / 2 = 1/4(1 - cos2A)^2
We can simplify "(1 - cos2A)^2." Remember that (a - b)^2 = a^2 - 2ab + b^2. Similarly (1 - cos2A)^2 = (1 - 2cos 2A + cos^2 2A);
1/4(1 - cos2A)^2 = 1/4(1 - 2cos 2A + cos^2 2A)
According to the fourth formula, cos^2 2A = (1 + cos4A) / 2;
1/4(1 - 2cos 2A + cos^2 2A) = 1/4(1 - 2cos 2A + (1 + cos4A) / 2)
= (taking LCM) 1/4( (2 - 4cos 2A + 1 + cos4A)/2 )
= (simplified) 1/8(3 - 4cos 2A + cos 4A)