Respuesta :

Answer:

The third is correct.

Step-by-step explanation:

Preimage: A(2,3), B(5,6), C(8,6), D(8,3)

Image: A'(-2, 6); B'(-5,3); C'(-8,3); D'(-8,6)

Option 3.

                Translation              Rotation 180° Clockwise

                   (x, y-9)                              (-x,-y)

A(2,3)            (2,-6)                              A' (-2,-6)

B(5,6)            (5,-3)                              B' (-5,3)

C(8,6)            (8,-3)                              C' (-8,3)

D(8,3)            (8,-6)                               D' (-8,6)

Transformation involves changing the position of a shape.

The sequence of transformation is: (d) A translation rule by [tex]\mathbf{(x,y) \to (x, y - 9)}[/tex] and then a 180 degrees clockwise rotation about the origin

The coordinates of the pre-image is:

[tex]\mathbf{A = (2,3)}[/tex]

[tex]\mathbf{B = (5,6)}[/tex]

[tex]\mathbf{C = (8,6)}[/tex]

[tex]\mathbf{D = (8,3)}[/tex]

Of the given sequence of transformations, option (d) is correct.

The proof is as follows.

First, translate ABCD by (x, y - 9)

So, we have:

[tex]\mathbf{(x,y) \to (x, y - 9)}[/tex]

[tex]\mathbf{(2,3) \to (2, -6)}[/tex]

[tex]\mathbf{(5,6) \to (5, -3)}[/tex]

[tex]\mathbf{(8,6) \to (8, -3)}[/tex]

[tex]\mathbf{(8,3) \to (8, -6)}[/tex]

Next, rotate by 180 degrees.

The rule of this transformation is:

[tex]\mathbf{(x,y) \to (-x,-y)}[/tex]

So, we have:

[tex]\mathbf{(2,-6) \to (-2,6)}[/tex]

[tex]\mathbf{(5,-3) \to (-5,3)}[/tex]

[tex]\mathbf{(8,-3) \to (-8,3)}[/tex]

[tex]\mathbf{(8,-6) \to (-8,6)}[/tex]

From the graph, the coordinates of the image are:

[tex]\mathbf{A" = (-2, 6)}[/tex]

[tex]\mathbf{ B" = (-5,3)}[/tex]

[tex]\mathbf{C" = (-8,3)}[/tex]

[tex]\mathbf{D" = (-8,6)}[/tex]

Hence, the sequence of transformation is:

(d) A translation rule by [tex]\mathbf{(x,y) \to (x, y - 9)}[/tex] and then a 180 degrees clockwise rotation about the origin

Read more about transformations at:

https://brainly.com/question/11707700