Respuesta :
Answer:
a
[tex]y(t) = y_o e^{\beta t}[/tex]
b
[tex]x(t) = x_o e^{\frac{-\alpha y_o }{\beta }[e^{-\beta t} - 1] }[/tex]
c
[tex]\lim_{t \to \infty} x(t) = x_oe^{\frac{-\alpha y_o}{\beta } }[/tex]
Step-by-step explanation:
From the question we are told that
[tex]\frac{dy}{y} = -\beta dt[/tex]
Now integrating both sides
[tex]ln y = \beta t + c[/tex]
Now taking the exponent of both sides
[tex]y(t) = e^{\beta t + c}[/tex]
=> [tex]y(t) = e^{\beta t} e^c[/tex]
Let [tex]e^c = C[/tex]
So
[tex]y(t) = C e^{\beta t}[/tex]
Now from the question we are told that
[tex]y(0) = y_o[/tex]
Hence
[tex]y(0) = y_o = Ce^{\beta * 0}[/tex]
=> [tex]y_o = C[/tex]
So
[tex]y(t) = y_o e^{\beta t}[/tex]
From the question we are told that
[tex]\frac{dx}{dt} = -\alpha xy[/tex]
substituting for y
[tex]\frac{dx}{dt} = - \alpha x(y_o e^{-\beta t })[/tex]
=> [tex]\frac{dx}{x} = -\alpha y_oe^{-\beta t} dt[/tex]
Now integrating both sides
[tex]lnx = \alpha \frac{y_o}{\beta } e^{-\beta t} + c[/tex]
Now taking the exponent of both sides
[tex]x(t) = e^{\alpha \frac{y_o}{\beta } e^{-\beta t} + c}[/tex]
=> [tex]x(t) = e^{\alpha \frac{y_o}{\beta } e^{-\beta t} } e^c[/tex]
Let [tex]e^c = A[/tex]
=> [tex]x(t) =K e^{\alpha \frac{y_o}{\beta } e^{-\beta t} }[/tex]
Now from the question we are told that
[tex]x(0) = x_o[/tex]
So
[tex]x(0)=x_o =K e^{\alpha \frac{y_o}{\beta } e^{-\beta * 0} }[/tex]
=> [tex]x_o = K e^{\frac {\alpha y_o }{\beta } }[/tex]
divide both side by [tex] (K * x_o)[/tex]
=> [tex]K = x_o e^{\frac {\alpha y_o }{\beta } }[/tex]
So
[tex]x(t) =x_o e^{\frac {-\alpha y_o }{\beta } } * e^{\alpha \frac{y_o}{\beta } e^{-\beta t} }[/tex]
=> [tex]x(t)= x_o e^{\frac{-\alpha * y_o }{\beta} + \frac{\alpha y_o}{\beta } e^{-\beta t} }[/tex]
=> [tex]x(t) = x_o e^{\frac{\alpha y_o }{\beta }[e^{-\beta t} - 1] }[/tex]
Generally as t tends to infinity , [tex]e^{- \beta t}[/tex] tends to zero
so
[tex]\lim_{t \to \infty} x(t) = x_oe^{\frac{-\alpha y_o}{\beta } }[/tex]