Answer:
This shows 3 pivot position matrixes.
Step-by-step explanation:
The given matrix is:
[tex]\left[\begin{array}{ccc}1&-2&-5\\0&4&3\\-3&3&0\end{array}\right][/tex]
The option D is correct for this matrix.
The matrix is invertible and the given matrix has 3 pivot positions.
The matrix is invertible if its determinant is nonzero.
Multiply the 3rd row by 1/3.we get:
[tex]\left[\begin{array}{ccc}1&-2&-5\\0&4&3\\-1&1&0\end{array}\right][/tex]
Now, add the first row with third row:
[tex]\left[\begin{array}{ccc}0&-1&-5\\0&4&3\\-1&1&0\end{array}\right][/tex]
Replace third row by first row:
[tex]\left[\begin{array}{ccc}-1&1&0\\0&4&3\\0&-1&-5\end{array}\right][/tex]
This shows 3 pivot position matrixes.
Hence, a matrix is invertible and has 3 pivot positions.