Respuesta :

Given:

The graph of [tex]y = ax^2+c[/tex] contains the point (2, 14).

To find:

The point which lies on the graph of [tex]y = a(x-2)^2+c[/tex].

Solution:

Consider the given equations are

[tex]y_1 = ax^2+c[/tex]     ...(i)

[tex]y_2 = a(x-2)^2+c[/tex]      ...(ii)

The translation is defined as

[tex]g(x)=f(x+a)[/tex]

where, a is horizontal shift.

If a>0, then the graph shifts a units left and if a<0, then the graph shifts a units right.

From equation (i) and (ii), it is clear that a=-2. So, graph of [tex]y = ax^2+c[/tex] shifts 2 units right to get the graph of [tex]y = a(x-2)^2+c[/tex].

It means each point on [tex]y = ax^2+c[/tex] shifts 2 units right.

[tex](x,y)\to (x+2,y)[/tex]

(2, 14) lies on [tex]y = ax^2+c[/tex].

[tex](2,14)\to (2+2,14)[/tex]

[tex](2,14)\to (4,14)[/tex]

Therefore, (4,14)  must be lies on [tex]y = a(x-2)^2+c[/tex].