Respuesta :

Answer:

use synthetic division

Step-by-step explanation:

use synthetic division to solve [tex]\frac{x^{3}-x^{2} -17x-15}{x-5}[/tex].

if solved correctly, you should get [tex]x^{2} +4x+3[/tex]  with no remainder.

because there is no remainder, x-5 is a factor of the polynomial given.

[tex](x-5)[/tex] is a factor of the given polynomial because the value of the polynomial is [tex]0[/tex] at [tex]x=5[/tex].

Given:

The given polynomial is [tex]x^3-x^2-17x-15[/tex].

Explanation:

We know that, [tex](x-c)[/tex] is a factor of [tex]P(x)[/tex] if and only if [tex]f(c)=0[/tex].

We have,

[tex]P(x)=x^3-x^2-17x-15[/tex]

Substituting [tex]x=5[/tex] in the above polynomial, we get

[tex]P(5)=(5)^3-(5)^2-17(5)-15[/tex]

[tex]P(5)=125-25-85-15[/tex]

[tex]P(5)=0[/tex]

Since [tex]P(5)=0[/tex], therefore [tex](x-5)[/tex] is a factor of the given polynomial.

Learn more:

https://brainly.com/question/16151090