Respuesta :
Answer:A, B, and F
Step-by-step explanation:
C only has 5 zeros
D... Uh yeah
E is way over 4,000,000. It's actually 4,096,000,000.
The correct options are A, B and F.
Important information:
- The given expression is [tex]4\times 10^{6}[/tex].
Equivalent expression:
In option A,
[tex]\dfrac{1.2\times 10^9}{3\times 10^2}=\dfrac{1.2}{3}\times 10^{9-2}[/tex]
[tex]\dfrac{1.2\times 10^9}{3\times 10^2}=0.4\times 10^{7}[/tex]
[tex]\dfrac{1.2\times 10^9}{3\times 10^2}=0.4\times 10\times 10^{6}[/tex]
[tex]\dfrac{1.2\times 10^9}{3\times 10^2}=4\times 10^{6}[/tex]
In option B,
[tex]40\times 10^5=4\times 10\times 10^{5}[/tex]
[tex]40\times 10^5=4\times 10^{6}[/tex]
In option C,
[tex]400,000=4\times 100,000[/tex]
[tex]400,000=4\times 10^{5}\neq 4\times 10^{6}[/tex]
In option D,
[tex]4\neq 4\times 10^{6}[/tex]
In option E,
[tex]40^6=40\times 40\times 40\times 40\times 40\times 40\neq 4\times 10^{6}[/tex]
In option F,
[tex](2\times 10^8)(2\times 10^{-2}=(2\times 2)(10^8\times 10^{-2})[/tex]
[tex](2\times 10^8)(2\times 10^{-2}=4\times 10^6[/tex]
Therefore, the correct options are A, B and F.
Find out more about 'Equivalent expression' here:
https://brainly.com/question/2856945