Answer:
Step-by-step explanation:
a) This is a binomial distribution.
p = probability it is defective = 3% = 0.03, q = 1 - p = 1 - 0.03 = 0.97
This is a binomial distribution is given by the formula:
[tex]P(x)=C(n,x)*p^xq^{n-x}[/tex]
But n = 70
[tex]P(x=0)=C(70,0)*0.03^0*(0.97)^{70}=0.1186[/tex]
b) n = 102. Hence there can be 2 defective components, hence:
[tex]P(X\leq2)=P(X=0)+P(X=1)+P(X=2)=C(102,0)*0.03^0*(0.97)^{102}+C(102,1)*0.03^1*(0.97)^{102-1}+C(102,2)*0.03^2*(0.97)^{102-2}=0.0447+0.1441+0.2204=0.4062[/tex]
c) n = 105, there can be 5 defective products:
[tex]P(X\leq2)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)=C(102,0)*0.03^0*(0.97)^{102}+C(102,1)*0.03^1*(0.97)^{102-1}+C(102,2)*0.03^2*(0.97)^{102-2}+C(102,3)*0.03^3 *(0.97)^{102-3}+C(102,4)*0.03^4*(0.97)^{102-4}+C(102,5)*0.03^5*(0.97)^{102-5}=0.0447+0.1411+0.2204+0.2273+0.174+0.1054=0.913[/tex]