Answer:
(42.5, 37.5)
Step-by-step explanation:
Given:
Arthur = A(20, 35)
Cameron = C(65, 40)
Jamie = J(45, 20)
Required:
Coordinate of the midpoint of the distance between A and C.
SOLUTION:
Midpoint (M) of AC, is given as:
[tex] M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}) [/tex]
Let [tex] A(20, 35) = (x_1, y_1) [/tex]
[tex] C(65, 40) = (x_2, y_2) [/tex]
Plug the values into the given formula:
[tex] M(\frac{20 + 65}{2}, \frac{35 + 40}{2}) [/tex]
[tex] M(\frac{85}{2}, \frac{75}{2}) [/tex]
[tex] M(42.5, 37.5) [/tex]
Coordinate Jamie should run towards is (42.5, 37.5)