Respuesta :
Answer:
Time taken = 8.25 second
Explanation:
Given:
Force = 4000 N
Force = ma
4,000 = (1100)(a)
Acceleration = 3.6363 m/s²
v = u + at
0 = 30 + (3.6363)t
Time taken = 8.25 second
The time taken by the car to stop is 8.26 s.
Given data:
The mass of car is, m = 1100 kg.
The speed of car is, u = 30 m/s.
The magnitude of braking force is, F = 4000 N.
We need to first obtain the acceleration of car to get that, apply the Newton's second law as,
F = - ma (Negative sign shows that the force will resist the motion)
4000 = -(1100) a
[tex]a =-\dfrac{4000}{1100}\\\\a =-3.63 \;\rm m/s^{2}[/tex]
Now, apply the first kinematic equation of motion to obtain the time taken by the car to stop as,
v = u + at
Here, v is the final speed and v = 0, since car will stop finally.
So,
[tex]0=30+(-3.63)t\\\\t = \dfrac{30}{3.63}\\\\t=8.26 \;\rm s[/tex]
Thus , we can conclude that the time taken by the car to stop is 8.26 s.
Learn more about the Newton's second law of motion here:
https://brainly.com/question/13447525