Respuesta :

Answer:

The solution is [tex]\displaystyle x=1\pm \sqrt{47}[/tex]. Fourth option

Explanation:

Solve for x:

[tex]2x^2+3x-7=x^2+5x+39[/tex]

Move all the terms from the right to the left side of the equation, a zero in the right side:

[tex]2x^2+3x-7-x^2-5x-39=0[/tex]

Join all like terms:

[tex]x^2-2x-46=0[/tex]

The general form of the quadratic equation is:

[tex]ax^2+bx+c=0[/tex]

Solve the quadratic equation by using the formula:

[tex]\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

In our equation: a=1, b=-2, c=-46

Substituting into the formula:

[tex]\displaystyle x=\frac{-(-2)\pm \sqrt{(-2)^2-4(1)(-46)}}{2(1)}[/tex]

[tex]\displaystyle x=\frac{2\pm \sqrt{4+184}}{2}[/tex]

[tex]\displaystyle x=\frac{2\pm \sqrt{188}}{2}[/tex]

Since 188=4*47

[tex]\displaystyle x=\frac{2\pm \sqrt{4*47}}{2}[/tex]

Take the square root of 4:

[tex]\displaystyle x=\frac{2\pm 2\sqrt{47}}{2}[/tex]

Divide by 2:

[tex]\displaystyle x=1\pm \sqrt{47}[/tex]

First option: Incorrect. The answer does not match

Second option: Incorrect. The answer does not match

Third option: Incorrect. The answer does not match

Fourth option: Correct. The answer matches exactly this option