The function 1=21.55 cos m-7 +43.75models the average high temperature in degrees Fahrenheit each month b throughout the year in Anchorage, Alaska, where m 1 for January and m 12 for December. Approximate y how many nmonths is the average high temperature above freezing (32 F)?​

The function 12155 cos m7 4375models the average high temperature in degrees Fahrenheit each month b throughout the year in Anchorage Alaska where m 1 for Janua class=

Respuesta :

Answer:

8

Step-by-step explanation:

The number of months that having average high temperature above freezing (32 F) is approximately for 3 months.

What is a function?

A function is defined as a relation between a set of inputs having one output each. It is a set of permissible outputs with the property that each input is related to exactly one output.

For the given situation,

The function is [tex]t=21.55 cos(\frac{\pi }{6}(m-7) )+43.75[/tex]

The temperature for months are calculated using the function t.

Here m = 1 refers January,

m = 2 refers February and so on.

Now substitute m = 1 for January,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(1-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(-6) )+43.75[/tex]

⇒ [tex]t=22.2[/tex]

For February m = 2,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(2-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(-5) )+43.75[/tex]

⇒ [tex]t=25.08[/tex]

For march m = 3,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(3-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(-4) )+43.75[/tex]

⇒ [tex]t=32.9[/tex]

For April m = 4,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(4-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(-3) )+43.75[/tex]

⇒ [tex]t=43.75[/tex]

For May m = 5,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(5-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(-2) )+43.75[/tex]

⇒ [tex]t=54.525[/tex]

For June m = 6,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(6-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(-1) )+43.75[/tex]

⇒ [tex]t=62.41[/tex]

For July m = 7,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(7-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(0) )+43.75[/tex]

⇒ [tex]t=65.3[/tex]

For August m = 8,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(8-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(1) )+43.75[/tex]

⇒ [tex]t=62.41[/tex]

For September m = 9,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(9-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(2) )+43.75[/tex]

⇒ [tex]t=54.525[/tex]

For October m = 10,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(10-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(3) )+43.75[/tex]

⇒ [tex]t=43.75[/tex]

For November m = 11,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(11-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(4) )+43.75[/tex]

⇒ [tex]t=32.975[/tex]

For December m = 12,

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(12-7) )+43.75[/tex]

⇒ [tex]t=21.55 cos(\frac{\pi }{6}(5) )+43.75[/tex]

⇒ [tex]t=25.087[/tex]

Thus from the above temperatures of each month, the temperature for three months are less than 32°F.

Hence we can conclude that the number of months that having average high temperature above freezing (32 F) is approximately for 3 months.

Learn more about functions here

https://brainly.com/question/27587069

#SPJ3