Respuesta :

Answer:

[tex]-210[/tex]

Step-by-step explanation:

We have the function:

[tex]f(x)=x^3-2x^2-51x-108[/tex]

And we want to find the remainder when it is divided by [tex](x-2)[/tex].

We can use the Polynomial Remainder Theorem, where if we have a function [tex]f(x)[/tex] divided by a binomial [tex](x-a)[/tex], then our remainder will be [tex]f(a)[/tex].

Here, our divisor is [tex](x-2)[/tex], so our a is 2.

Therefore, our remainder will be [tex]f(2)[/tex]. Let's substitute this for x. This yields:

[tex]f(2)=(2)^3-2(2)^2-51(2)-108[/tex]

Evaluate. Do the exponents:

[tex]f(2)=8-2(4)-51(2)-108[/tex]

Multiply:

[tex]f(2)=8-8-102-108[/tex]

Subtract:

[tex]f(2)=-210[/tex]

So, our remainder is -210.

And we're done!