Respuesta :

Answer:

Limit = 2

Step-by-step explanation:

[tex]\sum _{n=1}^{\infty }\frac{2^n}{3^n}\\= \sum _{n=1}^{\infty \:}\left(\frac{2}{3}\right)^n\\\\= \sum _{n=0}^{\infty \:}\left(\frac{2}{3}\right)^n-\left(\frac{2}{3}\right)^0[/tex]

[tex]\sum _{n=0}^{\infty \:}\left(\frac{2}{3}\right)^n=3,\\\\= 3-\left(\frac{2}{3}\right)^0\\= 2[/tex]

In this case it does converge, as 2/3 is between 1 and 0

Answer:

0

Step-by-step explanation:

2ⁿ / 3ⁿ = (⅔)ⁿ

⅔ is less than 1, so as n approaches infinity, the sequence approaches 0.